[As(V)As(III) $\left.\mathrm{O}_{6}\right]^{4-}$: An Uncommon Anion Group in the Crystal Structure of $\mathrm{K}_{2} \mathrm{Cu}_{3}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)_{2}{ }^{*}$

H. EFFENBERGER and F. PERTLIK
Institut für Mineralogie und Kristallographie der Universität Wien, Dr. Karl
Lueger-Ring 1, A-1010 Vienna, Austria

Received December 5, 1986

Abstract

The crystal structure of $\mathrm{K}_{2} \mathrm{Cu}_{3}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)_{2}$ was determined from single-crystal X-ray data by a direct method strategy and Fourier summations $[a=10.359(4) \AA, b=5.388(2) \AA, c=11.234(4) \AA, \beta=$ $110.48(2)^{\circ} ;$ space group $C 2 / m ; Z=2 ; R_{w}=0.025$ for 1199 reflections up to $\left.\sin \theta / \lambda=0.81 \AA^{-1}\right]$. In detail, the structure consists of $\mathrm{As}(\mathrm{V}) \mathrm{O}_{4}$ tetrahedra and $\mathrm{As}(\mathrm{III}) \mathrm{O}_{3}$ pyramids linked by a common O corner atom to $\left[\mathrm{As}(\mathrm{V}) \mathrm{As}(\mathrm{III}) \mathrm{O}_{6}{ }^{4-}\right.$ groups with symmetry m. The bridging bonds $\mathrm{As}(\mathrm{V})-\mathrm{O}[1.749(3) \AA]$ and $\mathrm{As}(\mathrm{III})-\mathrm{O}[1.838(2) \AA]$ are definitely longer than the other $\mathrm{As}(\mathrm{V})-\mathrm{O}$ bonds [mean $1.669 \AA$] and $\mathrm{As}(\mathrm{III})-\mathrm{O}$ bonds $[1.764(2) \AA, 2 \times]$. The angle $\mathrm{As}(\mathrm{V})-\mathrm{O}-\mathrm{As}(\mathrm{III})$ is $123.0(1)^{\circ}$. The Cu atoms are [4+2]and $[4+1]$-, and the K atom is [9]-coordinated to oxygen atoms. The $\mathrm{As}_{2} \mathrm{O}_{6}$ groups and the Cu coordination polyhedra are linked to sheets parallel to (001). These sheets are connected by the K atoms. Single crystals of $\mathrm{K}_{2} \mathrm{Cu}_{3}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)_{2}$ suitable for X -ray work were synthesized under hydrothermal conditions. © 1987 Academic Press, Inc.

Introduction

$\mathrm{As}(\mathrm{V}) \mathrm{O}_{4}$ (arsenate) tetrahedra and $\mathrm{As}(\mathrm{III}) \mathrm{O}_{3}$ (arsenite) pyramids are wellknown anion groups in inorganic crystal chemistry. A few compounds simultaneously containing both these groups have been described before now: $\mathrm{Mn}_{9}(\mathrm{OH})_{9}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsO}_{3}\right)\left(\mathrm{AsO}_{4}\right)_{2}=$ synadelphite (I) and $\mathrm{CuMn}_{14} \mathrm{Fe}(\mathrm{OH})_{6}\left(\mathrm{AsO}_{3}\right)_{5}\left(\mathrm{SiO}_{4}\right)_{2}\left(\mathrm{AsO}_{4}\right)$ $=$ dixenite (2) contain isolated arsenate tetrahedra as well as arsenite pyramids; Fe_{2} $\mathrm{As}\left(\mathrm{AsO}_{4}\right)_{3}(3)$ has finite groups consisting of three arsenate tetrahedra and one arsenite pyramid; sheets of corner-linked arsenate tetrahedra and arsenite pyramids in the ratio 1:1 occur in $\mathrm{As}_{2} \mathrm{O}_{4}$ (4) and in the ratio $1: 2$ in $\mathrm{As}_{3} \mathrm{O}_{5}(\mathrm{OH})$ (5). The connection of

[^0]$\mathrm{As}(\mathrm{III}) \mathrm{O}_{3}$ pyramids to rows, to sheets, or even to three-dimensional molecules is well known (6).

Systematic examinations of copper arsenate and copper arsenite bearing systems (7-14) under hydrothermal conditions yielded the new compound $\mathrm{K}_{2} \mathrm{Cu}_{3}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)_{2}$. The determination of its crystal structure showed that it consists of novel $[\operatorname{As}(\mathrm{V})$ $\left.\mathrm{As}(\mathrm{III}) \mathrm{O}_{6}\right]^{4-}$ groups. In connection with studies of the crystal chemical behavior of trivalent As atoms (6-13) it seemed appropriate to give a detailed description of its structure.

Synthesis

Crystals of $\mathrm{K}_{2} \mathrm{Cu}_{3}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)_{2}$ were prepared in a Teflon-lined vessel of $\sim 6 \mathrm{ml}$ capacity under the following conditions: The vessel

TABLE I
Summary of Crystal Data, X-Ray Data Collection, and Crystal Structure Refinement of $\mathrm{K}_{2} \mathrm{Cu}_{3}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)_{2}$

$a=10.359(4) \AA$	STOE four-circle diffractometer AED2
$b=5.388(2) \AA$	Program system STRUCSY (STOE \& CIE, Darmstadt, FRG)
$c=11.234(4) \AA$	Crystal dimensions: $0.12 \times 0.20 \times 0.03 \mathrm{~mm}$
$\beta=110.48(2)^{\circ}$	Graphite monochromatized MoK α radiation
$V=587.4 \AA^{3}$	Lattice parameters from 72 reflections
Space group $C 2 / m^{Z=2}\left\{\mathrm{~K}_{2} \mathrm{Cu}_{3}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)_{2}\right\}$	Scan speed ratio $2 \theta: \omega=1: 1$
$\rho_{\text {calc }}=4.30 \mathrm{~g} \mathrm{~cm}^{-3}$	0.5 to 1.5 sec per step; step width 0.03°
$\mu(\mathrm{Mo} K \alpha)=168 \mathrm{~cm} \mathrm{~cm}^{\circ}$	65 steps per reflection; 10 steps for background
Variables $=60$	3 standard reflections, interval 120 min
$R=0.029$	Range of data collecction: $2^{\circ}<2 \theta \leq 70^{\circ}$
$R_{w}=0.025, w=\left[\sigma\left(F_{\mathrm{o}}\right)\right]^{2}$	Total number of reflections measured: 2831

was filled with 2 g of an equimolar mixture of $\mathrm{As}_{2} \mathrm{O}_{3}$ and $\mathrm{KNO}_{3}, 1 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}_{2}$ (Perhydrol), and 1 g native copper ('foils'). An aqueous solution of $\mathrm{KOH}(\sim 20 \mathrm{wt} \% \mathrm{KOH})$ was added up to a total content of $80 \mathrm{vol} \%$. After heating to $500(\pm 10) \mathrm{K}$ during 4 days and after subsequent cooling to room temperature, crystals of the desired compound were obtained, $\mathrm{K}_{2} \mathrm{Cu}_{3}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)_{2}$ is light green in color. The monoclinic prismatic crystals are ledges elongated parallel to [010] with a tabular habit formed predominantly by $\{001\}$. In addition the two crystallographic forms $\{\overline{2} 01\}$ and $\{010\}$ were indexed. The crystal dimensions range up to 0.20×0.30 $\times 0.10 \mathrm{~mm}$.

Experimental

The cell data and relevant information about the measurements of the X-ray data and the structure refinement are given in Table I. The collected intensities were corrected for Lorentz and polarization effects as well as for absorption (Gaussian integration according to the crystal shape).

Parts of the As and Cu atoms were located by a direct method strategy. The coordinates of all the other atoms were found by subsequent Fourier and difference Fourier summations. Complex neutral atomic scattering functions (15) were used. The secondary isotropic extinction was taken into

TABLE II
Structural Parameters for $\mathrm{K}_{2} \mathrm{Cu}_{3}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)_{2}$ with Estimated Standard Deviations

Atom	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}	$U_{\text {eq }}$.
K	0.63843(9)	0	0.42405(10)	0.0217(4)	0.0147(4)	0.0269 (5)	0	$0.0094(4)$	0	0.0189
$\mathrm{Cu}(1)$	0	0	0	0.0092(2)	0.0072(3)	$0.0177(3)$	0	0.0002(2)	0	0.0113
$\mathrm{Cu}(2)$	0.23475(4)	0	0.24068(5)	0.0106(2)	0.0084(2)	0.0134(2)	0	$0.0008(2)$	0	0.0106
As(1)	0.91910(3)	0	$0.30660(4)$	$0.0084(1)$	0.0081(2)	0.0130(2)	0	$0.0022(1)$	0	0.0093
As(2)	0.67330(4)	0	0.04389(4)	0.0102(1)	0.0089(2)	0.0131(2)	0	$0.0024(1)$	0	0.0102
O(1)	0.8577(3)	0	0.1404(3)	0.010(1)	$0.019(1)$	0.016(1)	0	0.004(1)	0	0.014
O(2)	1.0894(2)	0	$0.3545(3)$	$0.008(1)$	$0.021(2)$	$0.018(1)$	0	$0.004(1)$	0	0.015
O(3)	0.8556(2)	0.2536(5)	$0.3529(2)$	0.019(1)	0.013(1)	$0.015(1)$	0.006 (1)	0.001(1)	0.000 (1)	0.016
$\mathrm{O}(4)$	$0.6221(2)$	0.2548(4)	$0.1156(2)$	0.013(1)	0.010(1)	0.014(1)	0.001(1)	0.001(1)	-0.002(1)	0.012

consideration during the final stage of refinement ($g=8.2(5) \times 10^{-6}(16)$).

The existence of pentavalent As atoms as well as trivalent As atoms was proved: (a) a final difference Fourier summation showed maximum and minimum peak heights of 1.18 and -1.74 e \AA^{-3}; (b) coordination polyhedra as well as bond valences are in agreement with crystal chemical experience. The structure parameters are given in Table II, and some interatomic distances and bond angles are given in Table III.

Discussion

The K atom has a clear-cut [9]-coordination with $\mathrm{K}-\mathrm{O}$ bonds from 2.801 to $3.057 \AA$ as is well known for potassium atoms (18).The next K-O distances of 3.68 \AA are longer than $\mathrm{K}-\mathrm{K}, \mathrm{K}-\mathrm{Cu}$, and $\mathrm{K}-\mathrm{As}$ distances in $\mathrm{K}_{2} \mathrm{Cu}_{3}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)_{2}$. The coordination polyhedron itself is conspicuously regular. It consists of a nearly planar sixmembered ring [atoms $O(2)-O\left(3^{\prime}\right)-O\left(3^{\prime}\right)-$ $\left.O(2)-O\left(3^{\prime \prime}\right)-O\left(3^{\prime \prime}\right)\right]$ and a three-membered

TABLE III
Interatomic Distances (\AA) and Bond Angles (${ }^{\circ}$) For $\mathrm{K}_{2} \mathrm{Cu}_{3}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)_{2}$ with Estimated Standard Deviations in Parentheses [Bond Valences s (v.u.)

According to (17)]

Coordination	s		Ligands	Edge	Angle	
$\mathrm{Cu}(1)-\mathrm{O}(4)=1.970(2)$	0.44	$4 \times$	$\mathrm{O}(4) \mathrm{O}(4)$	$3.941(4)$	180	$2 \times$
$\mathrm{Cu}(1)-\mathrm{O}(1)=2.507(2)$	$\underline{0.10}$	$2 \times$	$\mathrm{O}(4) \mathrm{O}(4)$	$2.923(4)$	$95.8(1)$	$2 \times$
	1.97		$\mathrm{O}(4) \mathrm{O}(4)$	$2.643(4)$	$84.2(1)$	$2 \times$
			$\mathrm{O}(4) \mathrm{O}(1)$	$3.237(4)$	$91.8(1)$	$4 \times$
			$\mathrm{O}(4) \mathrm{O}(1)$	$3.140(4)$	$88.2(1)$	$4 \times$
				$\mathrm{O}(1)$	$5.014(6)$	180
$\mathrm{Cu}(2)-\mathrm{O}(3)=1.953(2)$	0.46	$2 \times$	$\mathrm{O}(3) \mathrm{O}(3)^{a}$	$2.655(5)$	$85.6(1)$	
$\mathrm{Cu}(2)-\mathrm{O}(4)=1.984(2)$	0.42	$2 \times$	$\mathrm{O}(3) \mathrm{O}(4)$	$2.96(3)$	$95.2(1)$	$2 \times$
$\mathrm{Cu}(2)-\mathrm{O}(2)=2.292(2)$	$\underline{0.18}$		$\mathrm{O}(3) \mathrm{O}(4)$	$3.932(3)$	$174.5(1)$	$2 \times$
	1.95		$\mathrm{O}(3) \mathrm{O}(2)^{a}$	$3.067(3)$	$92.2(1)$	$2 \times$
			$\mathrm{O}(4) \mathrm{O}(4)$	$2.643(4)$	$83.5(1)$	
			$\mathrm{O}(4) \mathrm{O}(2)$	$3.115(4)$	$93.3(1)$	$2 \times$
$\mathrm{As}(1)-\mathrm{O}(1)=1.749(3)$	0.99		$\mathrm{O}(1) \mathrm{O}(2)$	$2.740(4)$	$107.2(2)$	
$\mathrm{As}(1)-\mathrm{O}(2)=1.654(2)$	1.39		$\mathrm{O}(1) \mathrm{O}(3)$	$2.757(4)$	$107.2(1)$	$2 \times$
$\mathrm{As}(1)-\mathrm{O}(3)=1.676(2)$	$\underline{1.28}$	$2 \times$	$\mathrm{O}(2) \mathrm{O}(3)^{a}$	$2.775(3)$	$112.9(1)$	$2 \times$
	4.94		$\mathrm{O}(3) \mathrm{O}(3)^{a}$	$2.733(5)$	$109.2(1)$	
$\mathrm{As}(2)-\mathrm{O}(1)=1.838(2)$	0.73^{b}		$\mathrm{O}(1) \mathrm{O}(4)$	$2.728(3)$	$98.5(1)$	$2 \times$
$\mathrm{As}(2)-\mathrm{O}(4)=1.764(2)$	$\underline{0.94^{b}}$	$2 \times$	$\mathrm{O}(4) \mathrm{O}(4)$	$2.745(4)$	$102.2(1)$	
	2.61^{b}					
$\mathrm{~K}-\mathrm{O}(2)=2.801(2)$	0.15	$2 \times$	$\mathrm{As}(1)-\mathrm{O}(1)-\mathrm{As}(2)=123.0(1)$			
$\mathrm{K}-\mathrm{O}(3)=2.818(2)$	0.14	$2 \times$				
$\mathrm{K}-\mathrm{O}\left(3^{\prime}\right)=2.971(2)$	0.09	$2 \times$				
$\mathrm{K}-\mathrm{O}\left(2^{\prime}\right)=3.038(3)$	0.07					
$\mathrm{~K}-\mathrm{O}\left(3^{\prime \prime}\right)=3.057(2)$	$\underline{0.07}$	$2 \times$				
	0.98					

[^1]ring [atoms $\mathrm{O}\left(2^{\prime}\right)-\mathrm{O}(3)-\mathrm{O}(3)$] which are both approximately parallel to (001). The $\mathrm{O}-\mathrm{K}-\mathrm{O}$ angles within the six-membered ring vary from $51.5(1)$ to $64.1(1)^{\circ}$; the sum of these six angles is 347.0°. The K atom is shifted out of the least-squares plane defined by these six O atoms toward the three other O atoms. The $\mathrm{O}-\mathrm{K}-\mathrm{O}$ angles within the three-membered ring are $56.2(1)^{\circ}(1 \times)$ and $63.0(1)^{\circ}(2 \times)$; the $\mathrm{O}-\mathrm{K}-\mathrm{O}$ angles between O atoms belonging to two different kinds of rings vary from 69.3(1) to $75.4(1)^{\circ}$. This arrangement of the O atoms results in a ditrigonal pyramidal pseudosymmetry of the KO_{9} polyhedron.

The Cu atoms are $[4+2]-$ and $[4+$ 1]-coordinated and the four nearest O atom neighbors are in a "square" planar arrangement. Due to their site symmetries $2 / m$ and m the arrangements of the O atoms in both the CuO_{4} squares are planar. The $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles between opposite O atoms are restricted by symmetry to 180° at the $\mathrm{Cu}(1)$ atom and they are slightly distorted by 5.5° at the $\mathrm{Cu}(2)$ atom (19). The $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles between neighboring O atoms vary from 83.5 to 95.8°. The average of the short $\mathrm{Cu}-\mathrm{O}$ bonds within the CuO_{4} squares are equal to each other within limits of error $\left[\mathrm{Cu}(1) \mathrm{O}_{4}: 1.970 \AA, \mathrm{Cu}(2) \mathrm{O}_{4}: 1.969 \AA\right]$. The $\mathrm{Cu}(1)$ atom has two and the $\mathrm{Cu}(2)$ atom has one additional O atom neighbor. These long $\mathrm{Cu}(1)-\mathrm{O}(1)$ and $\mathrm{Cu}(2)-\mathrm{O}(2)$ bonds are longer by 27.3 and 16.4% than those within the CuO_{4} squares. The angles between the short and long $\mathrm{Cu}(2)-\mathrm{O}$ bonds are all $>90^{\circ}$; the $\mathrm{Cu}(2)$ atom is shifted out of the plane defined by its four nearest O atom neighbors toward the $O(2)$ atom, indicating a tetragonal pyramidal coordination figure, as is common for divalent copper atoms in a [4 $+1]$-coordination. All the other $\mathrm{Cu}-\mathrm{O}$ distances are $>3.30 \AA$.

A new structural unit determined in the crystal structure of $\mathrm{K}_{2} \mathrm{Cu}_{3}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)_{2}$ is a $\left[\mathrm{As}(\mathrm{V}) \mathrm{As}(\mathrm{III}) \mathrm{O}_{6}\right]^{4-}$ group. The $\mathrm{As}(1)$ atom of this group is tetrahedrally coordinated as
characteristic for an $\mathrm{As}(\mathrm{V})$ atom (20), whereas the $\mathrm{As}(2)$ atom has three one-sided arranged O atom ligands as expected for an As(III) atom (21). These two polyhedra share a common O corner atom labeled $O(1)$. The whole anion group has symmetry m. The $\mathrm{As}(1)-\mathrm{O}(1)$ bond is $1.749 \AA$ and 5.05% longer than the three other $\mathrm{As}(1)-\mathrm{O}$ bonds. The $\mathrm{As}(2)-\mathrm{O}(1)$ bond length is 1.838 \AA and 4.20% longer than the two other $\mathrm{As}(2)-\mathrm{O}$ bonds. Similar differences were described in $\mathrm{Fe}_{2} \mathrm{As}\left(\mathrm{AsO}_{4}\right)_{3}(3)$, in $\mathrm{As}_{2} \mathrm{O}_{4}$ (4), and in $\mathrm{As}_{3} \mathrm{O}_{5}(\mathrm{OH})$ (5).

The average $\mathrm{As}(1)-\mathrm{O}$ bond of $1.689 \AA$ compares well with common arsenate tetrahedra (20). The average $\operatorname{As}(2)-\mathrm{O}$ bond of $1.789 \AA$ is within limits of error equal to the mean $\mathrm{As}(\mathrm{III})-\mathrm{O}$ bond length calculated from 15 well-determined AsO_{3} pyramids of $1.785 \AA$ (21). The average angle $\mathrm{O}-\mathrm{As}(1)-\mathrm{O}$ of 109.4° is practically identical to the theoretical value of 109.47°. As compared to that the mean value of the $\mathrm{O}-\mathrm{As}(2)-\mathrm{O}$ angles is 99.7°.

The coordination polyhedra of the four O atoms are dissimilar. The $O(1)$ atom is planar (3) coordinated by the atoms As(1), $\mathrm{As}(2)$, and $\mathrm{Cu}(1)$ (long $\mathrm{Cu}-\mathrm{O}$ bond). The sum of cation- $O(1)-$ cation angles is 360.0°. The atoms $O(2)$ and $O(3)$ are each bonded to three K atoms, one $\mathrm{As}(1)$ atom, and one $\mathrm{Cu}(2)$ atom; the $\mathrm{O}(2)$ atom is the fifth neighboring ligand of the $\mathrm{Cu}(2)$ atom, and the $\mathrm{O}(3)$ atom is within the $\mathrm{Cu}(2) \mathrm{O}_{4}$ square. The coordination polyhedron around the $O(2)$ atom is a distorted tetragonal pyramid with the three K atoms and the $\mathrm{As}(1)$ atom forming the basal plane and the $\mathrm{Cu}(2)$ atom at the apex. The cations around the $O(3)$ atom form a distorted trigonal pyramid with the atoms $\mathrm{Cu}(2), \mathrm{As}(1)$, and $\mathrm{K}[\mathrm{O}(3)-\mathrm{K}=$ $2.818 \AA$] as the equatorial plane and the two K atoms with $\mathrm{O}(3)-\mathrm{K}=2.971$ and $3.057 \AA$ as the two apices. The $\mathrm{O}(4)$ atom lies simultaneously in the $\mathrm{Cu}(1) \mathrm{O}_{4}$ and $\mathrm{Cu}(2) \mathrm{O}_{4}$ squares and has the $\mathrm{As}(2)$ atom as a third neighbor. The coordination figure is ap-
proximately a trigonal pyramid with the $O(4)$ atom at the apex; the sum of angles at the $O(4)$ atom is 342.7°. The sums of bond strengths calculated for the O atoms according to (I7) (cf. Table III) are 1.82, 1.94, 2.04 , and 1.80 valence units.

It should be mentioned that within the structure of $\mathrm{K}_{2} \mathrm{Cu}_{3}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)_{2}$ all atoms [except $O(3)$ and $O(4)]$ are arranged at the mirror planes. In addition some of the atomic coordinates show remarkable similarities [e.g., x / a for $\mathrm{O}(1)$ and $\mathrm{O}(3), y / b$ for $O(3)$ and $O(4)$, or z / c for $O(2)$ and $O(3)]$. The result is a high (pseudo)symmetry of the individual coordination polyhedra as well as of the whole atomic arrangement. As shown in Fig .1 one $\mathrm{Cu}(1) \mathrm{O}_{4}$ square and two $\mathrm{Cu}(2) \mathrm{O}_{4}$ squares are connected to a $\mathrm{Cu}_{3} \mathrm{O}_{8}$ group sharing two common $\mathrm{O}(4)-\mathrm{O}(4)$ edges of $2.643 \AA$. The three CuO_{4} squares are approximately parallel to ($\overline{101}$). These $\mathrm{Cu}_{3} \mathrm{O}_{8}$ groups and the $\mathrm{As}_{2} \mathrm{O}_{6}$ groups are connected to rows parallel to [010]. The longer $\mathrm{Cu}-\mathrm{O}$ bonds combine these $\mathrm{Cu}_{3}\left(\mathrm{As}_{2}\right.$ $\left.\mathrm{O}_{6}\right)_{2}$ rows to " $7.46-\AA$ sheets" parallel to (001) (see Fig. 2). A three-dimensional structure is formed by the interconnection of the K atoms. The KO_{9} polyhedron

Fig. 1. Detail of the crystal structure of $\mathrm{K}_{2} \mathrm{Cu}_{3}\left(\mathrm{As}_{2}\right.$ $\left.\mathrm{O}_{6}\right)_{2}$ in a projection onto ($\overline{101) \text {. The } \mathrm{Cu}_{3} \mathrm{O}_{8} \text { groups }}$ (edge-sharing CuO_{4} "squares') and their connection with the $\left[\mathrm{As}_{2} \mathrm{O}_{6}\right]^{4-}$ groups to rows parallel to [010] is shown. The labeling of the atoms is indicated. The AsO_{4} and AsO_{3} polyhedra are shaded.

Fig. 2. The crystal structure of $\mathrm{K}_{2} \mathrm{Cu}_{3}\left(\mathrm{As}_{2} \mathrm{O}_{6}\right)_{2}$ in a projection onto (010). The coordination around the K atoms is given in one case. The planes defining the three- and six-membered rings within the KO_{9} polyhedron are dotted. The "short" $\mathrm{Cu}-\mathrm{O}$ bonds are solid lines; the "long" $\mathrm{Cu}-\mathrm{O}$ bonds are drawn as broken lines. The labeling of the atoms is indicated. The AsO_{4} and AsO_{3} polyhedra are shaded.
shares four $\mathrm{O}-\mathrm{O}$ edges with the $\mathrm{Cu}(2) \mathrm{O}_{5}$ polyhedra [two within the $\mathrm{Cu}(2) \mathrm{O}_{4}$ square] and three $\mathrm{O}-\mathrm{O}$ edges with the $\mathrm{As}(2) \mathrm{O}_{4}$ tetrahedra. These $\mathrm{O}-\mathrm{O}$ edges are definitely shorter than the unshared $\mathrm{O}-\mathrm{O}$ edges.

Acknowledgment

The Hochschuljubiläumsstiftung der Stadt Wien enabled the performance of the syntheses with broad support.

References

1. P. B. Moore, Amer. Mineral. 55, 2023 (1970).
2. T. Araki and P. B. Moore, Amer. Mineral. 66, 1263 (1981).
3. F. d'Yvoire and Nguyen-Hug-Dung, Acta Crystallogr. Sect. B 35, 1751 (1979).
4. P. G. Jones, W. Beesk, G. M. Sheldrick, and E. Schwarzmann, Acta Crystallogr. Sect. B 36, 439 (1980).
5. D. Bodenstein, A. Brehm, P. G. Jones, E. Schwarzmann, and G. M. Sheldrick, Z . Na turforsch. B 37, 138 (1982).
6. F. Pertlik, Mitt. Österr. Mineral. Ges. 126, 11 (1978).
7. F. Pertlik, Tschermaks Mineral. Petrogr. Mitt. 22, 211 (1975).
8. F. Pertlik, Z. Kristallogr. 145, 35 (1977).
9. F. Pertlik, Z. Anorg. Allg. Chem. 436, 201 (1977).
10. F. Pertlik, Acta Crystallogr. Sect. C 42, 774 (1986).
11. F. Pertlik, Monatsh. Chem. 117, 1257 (1986).
12. F. Pertlik, Acta Crystallogr. Sect. C 43, 381 (1987).
13. F. Pertlik, Mineral. Petrol. 36, 85 (1987).
14. H. Effenberger, Acta Crystallogr. Sect. C 43, 399 (1987).
15. "International Tables for X-Ray Crystallogra-
phy," Vol. IV, Kynoch Press, Birmingham (1974).
16. W. H. Zachariasen, Acta Crystallogr. 23, 558 (1967).
17. I. D. Brown and K. K. Wu, Acta Crystallogr. Sect. B 32, 1957 (1976).
18. G. Cocco, L. Fanfani, and P. F. Zanazzi, "Handbook of Geochemistry," Vol. II-2, p. 19-A, Springer-Verlag, Berlin/Heidelberg/New York (1972).
19. H. Effenberger, J. Solid State Chem., in press.
20. W. H. Baur, "Handbook of Geochemistry," Vol. II-3, p. 33-A, Springer-Verlag, Berlin/Heidelberg/ New York (1978).
21. F. Pertlik, Monatsh. Chem. 110, 387 (1979).

[^0]: * Dedicated to Dr. H. Nowotny.

[^1]: ${ }^{a}$ Common $\mathrm{O}-\mathrm{O}$ edge with the KO_{9} polyhedron.
 ${ }^{b}$ Calculated as $\mathrm{As}(\mathrm{V})$ because lack of values for $\mathrm{As}(\mathrm{III})$.

